An Efficient Spark-Based Network Anomaly Detection
نویسندگان
چکیده
منابع مشابه
An Entropy-Based Network Anomaly Detection Method
Data mining is an interdisciplinary subfield of computer science involving methods at the intersection of artificial intelligence, machine learning and statistics. One of the data mining tasks is anomaly detection which is the analysis of large quantities of data to identify items, events or observations which do not conform to an expected pattern. Anomaly detection is applicable in a variety o...
متن کاملAn efficient data structure for network anomaly detection
Despite the rapid advance in networking technologies, detection of network anomalies at high-speed switches/routers is still far from maturity. To push the frontier, two major technologies need to be addressed. The first one is efficient feature-extraction algorithms/hardware that can match a line rate in the order of Gb/s; the second one is fast and effective anomaly detection schemes. In this...
متن کاملEfficient GAN-Based Anomaly Detection
Generative adversarial networks (GANs) are able to model the complex highdimensional distributions of real-world data, which suggests they could be effective for anomaly detection. However, few works have explored the use of GANs for the anomaly detection task. We leverage recently developed GAN models for anomaly detection, and achieve state-of-the-art performance on image and network intrusio...
متن کامل3D Gabor Based Hyperspectral Anomaly Detection
Hyperspectral anomaly detection is one of the main challenging topics in both military and civilian fields. The spectral information contained in a hyperspectral cube provides a high ability for anomaly detection. In addition, the costly spatial information of adjacent pixels such as texture can also improve the discrimination between anomalous targets and background. Most studies miss the wort...
متن کاملAn Efficient Parallel Anomaly Detection Algorithm Based on Hierarchical Clustering
For the purpose of improving real time and profiles accuracy, a parallel anomaly detection algorithm based on hierarchical clustering has been proposed. Training and predicting are two busiest processes and they are parallel designed and implemented. Moreover, an abnormal cluster feature tree is built to dig anomalies from normal profiles. A series of experiment results on wellknown KDD Cup 199...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Computing and Digital Systems
سال: 2020
ISSN: 2210-142X
DOI: 10.12785/ijcds/0906015